skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krishnan, Anjali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Feeling guilty when we have wronged another is a crucial aspect of prosociality, but its neurobiological bases are elusive. Although multivariate patterns of brain activity show promise for developing brain measures linked to specific emotions, it is less clear whether brain activity can be trained to detect more complex social emotional states such as guilt. Here, we identified a distributed guilt-related brain signature (GRBS) across two independent neuroimaging datasets that used interpersonal interactions to evoke guilt. This signature discriminated conditions associated with interpersonal guilt from closely matched control conditions in a cross-validated training sample (N = 24; Chinese population) and in an independent test sample (N = 19; Swiss population). However, it did not respond to observed or experienced pain, or recalled guilt. Moreover, the GRBS only exhibited weak spatial similarity with other brain signatures of social-affective processes, further indicating the specificity of the brain state it represents. These findings provide a step toward developing biological markers of social emotions, which could serve as important tools to investigate guilt-related brain processes in both healthy and clinical populations. 
    more » « less
  2. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. 
    more » « less